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Media are considered where elastic properties vary from point to point.
The variation of elastic properties of the medium may occur continuously
or abruptly, whereby the continuous variation might be in the form of
discrete steps. The latter is the case in synthetic laminated materials;
within each layer there is a continuous variation of elastic properties
which terminates in an abrupt jump on the boundaries of the layers.

In the following, one considers merely the continuous nonhomogeneity
of the medium which corresponds to the classic concept of the medium in
the conventional theory of elasticity of homogeneous medis.

Continuous nonhomogeneity may be either isotropic or anisotropic. The
isotropic nonhomogeneity of a medium will be understood to characterize
a body in which the elastic modulus and the Poisson ratio may vary from
point to point; however, the number of independent functions determining
the elastic properties, as always, equals two. Also, if at a selected
point one chooses an arbitrary direction, the elastic properties are
equal in all the directions and there are no preferred structural orien-
tations.

Anisotropic nonhomogeneity of a body may be of a twofold character.
Firstly, nonhomogeneity manifested merely by the change of megnitude of
the elastic properties from point to point irrespective of the orien~
tation of the coordinate axes.

The second type of anisotropic nonhomogeneity is such that the orien-
tation of the principal axes of anisotropy is different at various
points of the body whereby these orientations vary continuously from
point to point; the magnitudes of elastic properties of the body also
vary continuously. This type of anisotropy is the most general one.
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1. Axisymmetric problem in theory of elasticity of nonhomogeneous
isotropic wediar. We shall introduce the following notations: G* is s
variable shear modulus dependent on the coordinates of the point; E* is
a variable longitudinal modulus of elasticity; v»* is a variable Poisson
ratio; A* is a variable Lamé modulus; 0 is volumetric chanmge. Let & be
the component of displacement in radial direction and { the compoment of
displacement along the axis :, which is assumed to be the axis of sym-
metry of the problem. The relation between the components of the stress
and strain tensors retains its ordinary form also in this case of a non-
homogeneous medium
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Subatituting Expressions (1.1) into the equilibrium equations
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we obtain a system of differential equations with regard to & and ¢
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In order to render the problem considered here meaningful it is
necessary that two arbitrary elastic characteristics of the non-
homogeneous medium be given as axisymmetric functions of coordinates.
Let us assume the following functions:

G* = Ge*?, V¥ — const = v (1.5)

where G and a are constants. The gquantity a may be positive or negative.
We introduce an auxiliary function by means of a relation

E = g/ dr (1.6)

Eliminating function { from the system (1.4), in view of the assumed
nonhomogeneity (1.5), we obtain the following equation for the function

K:
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We may observe that for a = 0 the differential equation (1.7) becomes
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a bibharmonic equation and the function k becomes in this case the Love
function.

In the axisymmetric case the most interesting are two classes of prob-
lems: 1) semi-infinite space loaded on the limiting surface by & pre-
scribed set of surface forces;;2) circular cylinder with a prescribed
set of surface forces. In both cases, in order to satisfy the boundary
conditions the solution of Equation (1.7) should have the following form:

% (r, z) = 70 (1) (1.8)

where s is as yet an arbitrary complex quantity. Substitution of (1.8)
into (1.7) gives the following equation for the function ¥(r):
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Equation (1.9) may be put in the form
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Differential equation (1.11) splits into two separate equations
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Each of these equations can be reduced to the equation of the Bessel
type or a modified Bessel type depending on the signs of qlz and qzz.

For the problems of the class I, i.e. for a semi-infinite space, it
is necessary for the solution to be a Bessel function with a real argu-
ment.

This circumstance defines the range of the parameter = entering Ex-
pression (1.8), through which parameter the quantities ql2 and,qz2 are
determined in accordance with (1.12) and (1.10).

For the problems of class II there are other requirements resulting
from the boundary conditions on the side surfaces of the cylinder. These
limitations will be discussed in greater detail later in the text.

2. Nonhomogeneous semi-infinite space under a load distributed over &
circular area. The exponential parameter = entering into Formula (1.8)
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is complex:
m=t-is (2.1)

Solution of Equations (1.13) will be in the form of Bessel and Neuman
functions having a real argument if q12 and qz2 are definite positive
quantities. We substitute (2.1) into (1.10) and the resulting expression
into (1.12), then from the aforementioned condition we obtain
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From that follows that the range of variable t is
0<t<oo for >0, — o0 < t <0 for a <0

Substituting Expression (2.2) for = into (1.12), we obtain

t(t
g = (2t 4 a) 1/(1 T (zj—.f)a)z (2.3)

It is assumed here that ql2 = q22, inasmuch as these quantities in
condition (2.2) differ from each other merely by a fixed constant. We
introduce the notation

at {f + o)
p= Va 20 F ap (2.4)
The general integral of Equatioq (1.7) in terms of Bessel and Neuman
functions of a real argument has the form

w = ¢ (LF1 (8 cos pz + F2 (2) sin pz] Jo (gr) + (2.5)

’ ~+ [ F3 (8) cos pz -+ Fy {t) sin pz] No (gr)} dt

where Fl(t), Fz(t), F3(t) and F‘(t) are arbitrary functions. Substitut-
ing (2.5) into (1.8) and then using differential equation (1.4), we find
both components of the displacement vector, the expressions for which
can be given as

R, S e'%q [Fy (1) cos pz -+ Fy (1) sin pz] J1 (gr) dt
0

oo (2.6)
¢ = S e'zhpl {r, &) cos pz -+ V2 (r, t) sin pz] dt
o
In obtaining (2.6) the part of solutior containing Neuman functions
has been neglected since the latter are not relevant for the case of a
semi-infinite space. Also the following notations have been adopted:
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1
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Components of the stress tensor may be found from Expressions (1.1)
after the substitution therein of Expressions (1.5), (2.6) and the above-

defined abbreviations (2.7)
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Functions Fl(t) and F._,(t) entering into the above expressions are de-
termined from the boundary conditioms.

Let us consider the following boundary conditions for z = O:

{—/‘Y("/R) for r <R
0 for r >R
Here R is the radius of the circle at which the load is applied to
the semi-infinite space (Figure); f is a parameter characterizing the
intensity of the applied load; y(r/R) is a
fy(#} function characterizing the distribution of

the load.

T, =0 for 0 r <o, 5, = (2.12)

Expressions for components T, and o, using

“ L_r-.ﬂ N7 two arbitrary functions equivalent to Fl(t)
and Fz(t) can be given in the form of Fourier
and Bessel integrals as follows:
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_ o2 (s ¢
o, = 2 S oo (g7) qu 56 (z, 8) Jo (g, 5) ds 2.14)
0 0
Here r (z, s) and 0(z, s) are arbitrary functions of the argument s,
to the same extent as the above-mentioned functions are of argument ¢.
The connection between these two can be readily established.

Functions 7 (z, s) and o(z, s) for z = 0 are determined from boundary
conditions on the basis of the properties of the Fourier-Bessel integral.
Determining, then, functions Fl(t) and Fz(t) we obtain
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Having determined functions Fl(t) and Fb(t) in accordance with (2.15),
and utilizing abbreviations (2.16), it is possible to compute all the
components of the stress tensor from Expressions (2.8), (2.9), (2.10)
and (2,11).

Let us consider a uniformly distributed load applied te a circular
area of radius R. In that case the function y(r/R) = 1. The integral
s(gR) = (qR)Jl(qR). Substituting into the first of Expressioms (2.15),
we find

1—2
Fog=—" 5C ) tra, (¢R) m—_%t—(’ﬁm (2.17)

All the remaining formulas obtained in the previous section remain
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unaltered.

Solution for the case of a load uniformly distributed over a circular
ares is readily obtained from the previous solution if one considers the
applied circular load as a result of superposition of uniform loads dis-
tributed over a circular area and oriented in different directions.

3. Nonhomogeneous cylinder. Let us consider now the class II of prob-
lems. We consider a nonhomogeneous cylinder extending infinitely from
one of its ends and also a nonhomogeneous cylinder limited on both ends.
The cylinder may be assumed to be filled fully with a material, or the
central coaxial part may be assumed bollow.

In the case of an infinite cylinder, the solution should be in the
form of a Fourier integral and in the case of a finite cylinder it should
be in the form of Fourier series.

These forms of solutions are compatible with (1.8) if the exponential
also satisfies other criteria.

In order to satisfy the boundary conditions on the side wall of the
cylinder, the exponential term should comprise a varying parameter with
regard to which one accomplishes the integration or summation in such a
way that it enters merely under the sign of trigonometric function., It
is not difficult to see that the solution previously obtained does not
meet this condition, since this parameter enters not only into the tri-
gonometric function, but also into the exponential function. The exponent
should therefore have the following form:

m == my 4 i3 3. 1)

Here L is a constant, s is a varying quantity which in the following
will constitute a summation or integration parameter. In addition to the
above condition it is also necessary to subject (3.1) to the requirement
that ql‘g bhe negative. The latter leads to equations
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From this it is seen that g for all values of s is a purely imaginary
quantity and the solution of the differential equation will be given by
a cylindrical function of imaginary argument. Let us denote

n o? - a o? gtV e
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A general sclution for a cylinder extending infinitely from one end
has the form
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% (r, 2} = exp <~ 7)& {Io (wr) [F1 (s) cos (s2) + F3 (s) sin (s2)] +

0
+ Ko (vr) [F3 (s) cos (sz) + Fy(s) sin (sz2)]} ds (3.4)

A general solution for a eylinder of a limited length 1 is

o0
% (rz) =exp (— a?z) Z {Io {vy1) {Ak cos :—‘iﬁ z + By sin ;Ef}ﬁ z} -+
A k=0

e

. P
+ Ky {vy1) [Ck €os 7z + D, sin n—! zJ} (3.5)
Here ! is the length of the cylinder.
a o  qk? R . < N ke )
vkz{z‘+j+7§“+[a(—2‘+z+~lz )—z] } (3-6)
(k=0,1,2,...)

From (3.4) and (3.5) one can find the components of the stress tensor
and displacement tensor which are suitable for the solution of boundary
problems on the side surface of the infinite and finite cylinders.

Translated by B.Z.



