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Media are considered where elastic properties vary from point to DOi&. 

The variation of elastic properties of the medium may occur continuously 
or abruptly, whereby the continuous variation might be in the form of 
discrete steps. The latter is the case in synthetic laminated materials; 
within each layer there is a continuous variation of elastic properties 
which terminates in an abrupt juap on the boundaries of the layers. 

In the following, one considers merely the continuous nonhomogeneitr 
of the medium which corresponds to the classic concept of the medium in 
the conventional theory of elasticity of homogeneous media. 

Continuous nonhomogeneity may be either isotropic or anisotropic. The 
isotropic nonhomogeneity of a medium will be understood to characterize 
a body in which the elastic modulus and the Poisson ratio may vary from 
point to point; however, the number of independent functions deterainfn$ 
the eIastic properties, as always, equals two. Also, if at a selected 
point one chooses an arbitrary direction, the elastic properties are 
equal in all the directions and there are no preferred structural orien- 
tations. 

Anisotropic nonhomogeneity of a body may be of a twofold character. 
Firstly, nonhomogeneity manifested merely by the change of magnitude of 
the elastic properties from point to point irrespective of the orien- 
tation of the coordinate axes. 

The second type of anisotropic nonhomogeneity is such that the orien- 
tation of the principal axes of anisotropy is different at various 
points of the body whereby these orientations vary continuously from 
point to point; the magnitudes of elastic properties of the body also 
vary continuously. This type of anisotropy is the most general one. 
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1. Axisymmetric problem in theory of elPst&city of aonbomogeneous 
isotropic media. lie shall introduce the fallowing notations: CF is a 
variable shear modulus dependent on tha coordinates of the point; E* is 
a variable longitudinal modulus of elasticity; V* is a variable Poisson 
ratio: A* is a variable Lam6 modulus; 8 is volumetric change. Let 5 be 
the component of displacement in radial direction and 4 the component of 
displacement along the axis z. which is assumed to be the 
metry of the problem. The relation between the components 
and strain tensors retains its 
homogeneous medium 

ordinary form also in this 

axis of sya- 
of the stress 
case of a non- 

substituting Rxpressions (1.1) into the equilibrium equations 

re obtain a system of differential equations with regard to e and 4 

(1.2) 

(I.31 

(1.4) 

fn Order to render the problem considered here meaningful it is 
necessary that two arbitrary elastic characteristics of the non- 
homogeneous medium be given as axisymaetric functions of coordinates. 
Let us assume the following functions: 

G*=Geac Y* = const = Y (1.5) 

where G and a are constants. The quantity a may be positive or negative. 

Ue introduce an auxiliary function by means of a relation 

5,= axlar (1.6) 

Eliminating function [ from the system (1.4), in view of the assumed 
nonhomogeneity (1.5), re obtain the following equation for the function 
K: 

We may observe that for a = 0 the differential equation (1.7) becomes 
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a bihsrmonic equation and the function K becoses in this case the Love 
function. 

In the axisymmetric case the most interesting are two classes of prob- 
lems: 1) semi-infinite space loaded on the limiting surface by a pre- 
scribed set of surface forces;;2) circular cylinder with a prescribed 
set of surface forces. In both cases, in order to satisfy the boundarr 
conditions the solution of Equation (1.1) should have the following form: 

1c (r, 2) = P-P (i) (I.81 

where s is as yet an arbitrary complex quantity. Substitution of (1.8) 
into (1.7) gives the following equation for the function @trr): 

Here 
(1.9) 

P = 2m (m + a) - a, n4 = ma (m + ala (1.10) 

Equation (1.9) ray be put in the form 

Differential equation (1.11) splits into two separate equations 

(1.13) 

Each of these equations can be reduced to tba etanation of the Bessel 
type or a aodifi%d Bessel typs depending on the signs of q12 and q22. 

For the problems of the class I, i.e. for a semi-infinite space, it 
is necessary for tha solution to be a Bessel function with a real argu- 

ment . 

This circumstance defines tha range of the parsester R entering Ex- 
pression (1.8), through which parameter the quantities p12 and.q22 are 
determined in accordance with (1.12) and (1.10). 

For the problems of class II there are other requirements resulting 
from the boundary condition8 on the side surfaoea of the cylinder. These 
limitations will be discussed in greater detail later in the text. 

2. Noah%mogeneoua serf-iatimits sDIce an&w a food distributed oiler P 
afreular area. The exponential parameter a entering into Formula (1.8) 
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is complex: 

v~ = t -+ is (2.1) 

Solution of Equations (1.13) will be in the form of Bessel and Neuman 
functions having a real argument if q12 and ga2 are definite positive 
quantities. We substitute (2.1) into (1.10) and the resulting expression 

into (1.12), then from the aforementioned condition we obtain 

S=-=f -If at (t + a) v’ nt (t f cf) 

a + (2t + a)2 ’ m.1,p == t -& i 
It + (3 + a)Z 

From that follows that the range of variable t is 

O<t<m for a>O, -co<t<O for a<0 

Substituting Expression (2.2) for a into (1.12). we obtain 

q -= (at + a) 1/ t (t + 3) 
a + (Zt -_1- a)2 

(2.2) 

(3.3) 

It is assumed here that g12 = g22, inasmuch as these quantities in 
condition (2.2) differ from each other merely by a fixed constant. ge 
introduce the notation 

at (f I- ct) 
P= a -j- (2 -+ a)2 (2.4) 

The general integral of Equation (1.7) in terms of Bessel and Neumsn 
functions of a real argument has the form 

co 

x= 
s 

et2 {[FI (t) cos pz + Fz (t) sin pzl JO (yr) -t- 

II 
+ [F3 (t) cos pz i- Fa (t) sin 

where F,( t), F2 ( t) , F3 ( t) and F4( t) are arbitrary 

(2.5) 

pzl No (gp)} dt 

functions. Substitut- 

ing (2.5) into (1.g) and then using differential equation (1.4), we find 
both components of the displacement vector, the expressions for which 
can be given as 

g+_P efzq [FI (t) cos pz + Fz (t) sin pz] J1 (qr) dt 

0 

03 (2.6) 

g= 

s 
e”[gt (P, t) cos pz -f- ‘f/z (P, t) sin pz] dt 

0 

In obtaining (2.6) the part of solution containing Newman fanotions 
has been neglected since the latter are not relevant for the case of a 
semi-infinite space. Also the following notations have been adopted: 
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Yi (r, 1) = (u = t + a (1 - Zv)) 

YZ (r, t) = 
1 

“2 [pa (r, t) + u@2 (r, t)l 

@I (r, t) = Lq2F1 (t) - (1 - 2~) j/iiiFz Ml Jo (qr) 

@a (r, t) = [q2P2 (t) + (1 - 2V) d;qFl f4J Jo (q4 (2.7) 

Components of the stress tensor may be found from Expressions (1.1) 
after the substitution therein of Expressions (1.51, (2.6) and the above- 
defined abbreviations (2. ‘7) 

(I, = iz r 8fo (qr) ( FI (t) [v (- ta cos pz - Ztp sin pz - 
0 

(1 - v) 
- t2 cos pz + 2tp sin pz + p2 cos pz) + ~2 00s pz (tq2 u + 

+ tq PC (1 - 29 + q2p2 + qp V’G u (1 - WI + 

+ $&?sin pz (42 pt + ql/G tu (1 - 2v) -- q2 pt4 - qJGp2 (1 - 2v))J + 

+ F2 0) iv (- t a sin pz. + 2tp cos pz - t2 sin pz - 2tp cos pz + 

(1 ---I 
+ pa sin pzf + u” cos pz (q2 tp - q$G t24 (1 - 2v) + 

+ q2 PU - p2q V/a (1 - 2V)) + -sin pz (tq2 u - 

- tqp G (1 - 2v) - q2p2 + qp JGU (1 - 2v))]} dt (2.81 

co 

z Pf 
ZTz - (&@Z 

s 

+ 9F I/;(1 - .w i 

e”9Jl (qd {b 0) bos pz [&fq224 + 

t ] + sin pz [& (q2p + qu I/a (i - av)) - ,]j + 

+ Fz Vf [ cos PZ [&c-&2 (q2p -qu da (1 - 2v)) + p ] + 

+ sin pz 
L 

+pi (q”u - q&i (1 - 2~)) + t Ill 
dt (2.91 

00 

etzq2 IFI (t) CO.3 pz + F2 (t) sinpzj G(V)& + 

d(v) 
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+ qp 6 t (1 - 2v) + qy + qp vi (1 - 2v) 4]+ 

+ 
sin pz 

w [q v-i tu (1 - 2v) - q2pa (1 - 2Y) - qp2 v/a (1 - WI] + 

+ Fx (t) [z2 [2q2pt - qJ& tu (1 - 2x9 + q’ pa (1 - 2x9 - 

- qp2 fi (1 - 291 + sin pz 
[ 

- q2 + & (tq2u - qp v/a t (1 - 2v) - 

- q2p2 + qp I/; u (1 - 2vl11jj} q (2.10) 

co 

(J@ 
= 2&‘Iz _ 1 * 

1 i 
e”q.71 (qr) [FI (t) cos pz i- Fz (t) sin pzl dt -I- 

00 

+Y 
5 I-22y o 

e’*Jo (qr) {:,1,) [,oS pz [- q2 + k2 (4% + qp 6 t (1 - 2v) + 

+ q2p2 + qp JGu (1 -22y)) + 3 [q 1/i tu (1 - 2v) - q2 pa (1 - 2Y) - 1 
- qp2 1/;E (1 -Zv)]] + F2 (t) [e [2q2 pt - ql/i tu (1 - 2~) + 

+ q2pu (1 - 2~) - qp2 l/ii (1 - 2v)] + sin pz 
L 

- q2 + 

u&-yz (tq2u - QP vi t (1 -2av) - q2p2+ qp JGu (1 -2av) 
III 

dt (2.11) 

Functions P1( t) and Fz( t) entering into the above expressions are de- 
termined from the boundary conditions. 

Let us consider the following boundary conditions for z = 0: 

t PI = 0 for 0 < r < 00, 6, = n ” (r ’ R, 
\ 

for r d R 
for r>R 

X2.12) 

Here R is the radius of the circle at which the load is applied to 
the semi-infinite space (Figure); f is a parameter characterizing the 

intensity of the applied load; y(r/R) is a 
function uharacterizing the distribution of 
the load. 

Expressions for components r rz and uz using 
two arbitrary functions equivalent to Fl(t) 
and F2( t) can be given in the form of Fourier 
and Bessel integrals as follows: 

z PI = Geaz r qJ1 (qr) dq y SC (z, s) JI (qs) ds (2.131 
b h 
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Gr = lz y $0 (qr) dq i so (z, 4 Jo (q, s) ds 
0 0 

(2.14) 

Here z (2, 8) and o(z, t) are arbitrary functions of the argument 8. 

to the same extent as the above-mentioned functions are of argument t. 
The connection between these two can be readily established. 

Functions r (z, a) and O(Z, z) for z = 0 are determined from boundary 

conditions on the basis of the properties of the Fourier-Bessel integral. 

Determining, then, functions Fl( t) and Fz(t) we obtain 

(1 - 24 i 
F1 (t) = -2G- 

Q (4 
q ’ (@)S (t) - P (t) T (t) (2.15) 

Here 

P (t) = 
YQ + qp v/e (1 - 2v) + t (US + p2) 

Q2P - q V/a u (1 - w + P (u2 + P”) 
(2.16) 

s (t) = & I--q2 (24” + pZ) + (1 --y) t&l + (1 --y) (1 - 2v) tpqv/a+ 

+ (1 --y) Q2P2 + (1 --v) (1 - 2v) wVTu1 

T 0) = & 12472 pt (1 --Y) - qt1/- au(1-v)(1-2v)$(1-v)(1-2v)q~pa- 

- (1 -Y) (1 - 2v) qp2 I/a1 

Baving determined functions F1( t) and F2< t) in accordance with (2.15). 

and utilizing abbreviations (2. M), it is possible to compute all the 

components of the stress tensor from Expressions (2.8). (2.9). (2.10) 

and (2.11). 

Let us consider a uniformly distributed load applied to a circular 
area of radius R. In that case the function y(r/R) = 1. The integral 

s(qR) = (qR)J1(qR). Substituting into the first of Expressions 
me find 

(2.15). 

p1 (t) = - 9 fRJl ($1 8 (q _Q;“c’t, T (t) (2.17) 

All the remaining formulas obtained In the previous section remain 
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unaltered. 

Solution for the case of a load uniformly distributed over a circular 

area la readily obtained from the previous solution if one considers the 
apptled circular load as a result of superposition of uniform loads dis- 
tributed over a circular area and oriented In different directions. 

3. Nonhomogeneous cylladcr. Let us consider now the class II of prob- 
lems. Re consider a nonhomogeneous cylinder extending lnflnltely from 
one of Its ends and also a nonhomogeneous cylinder limited on both ends. 
The cylinder m&y be assumed to be filled fufly with a material, or the 
central coaxial part may be assumed hollow. 

In the case of an infinite cylinder, the solution should be in the 
form of a Fourier integral and in the case of a finlte cylinder it should 
be in the form of Fourier series. 

These forms of solutions are compatible with (1.8) if the exponential 
also satisfies other criteria. 

In order to satisfy the boundary conditions on the side wall of the 
cylinder, the exponential term should comprise a varying parameter with 
regard to which one accomplishes the integration or summation in such a 
way that It enters merely under the sign of trigonometric function. It 
Is not difficult to see that the solution previously obtained does not 
meet this condition, since this parameter enters not only into the tri- 
gonometric function, but also into the exponential function. The exponent 
should therefore have the following form: 

1)1 = ?Ho + is (3. 1) 

Here a0 is a constant, 8 is a varying quantity which In the following 
will constitute a summation or integration parameter. In addition to the 
above condition it Is also necessary to subject (3.1) to the requirement 
that *I, : be negative. The latter feads to equations 

From this it is seen that q for all values of s is a purely imaginary 
quantity and the solution of the differential equation will be given by 
a cylindrical function of imaginary argument. Let us denote 

A generaI solution for a cylinder extending infinitely from one end 
has the form 
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GO (4 IFI (4 cos (sz) -I- FZ (s) sin (~41 $ 

$ KO (ur) [“Fs (s) cos (sz) + F4 (s) sin (sz)]) ds 

A general solution for a cylinder of a limited length 1 is 

x (4 =exp (-y) fj {IO (u,t) [Ax cos !!k 2 + 3, sin 7 I] + \ k-o 

+ h’, ft’k’) [ck Xk cos -j- z + D, sin T z 

(3.4) 

Here 1 is the length of the cylinder. 

‘:k={$+~+~+[n(~+~+~)_gPi51i? 

(k = 0, 1, 2, . # .) 

(3.6) 

Fran (3.4) and (3.5) one can find the components of the stress tensor 
and displacement tensor which are suitable for the solution of boundary 
problems on the side surface of the infinite and finite cylinders. 

Translated by B.Z. 


